Jumat, 16 Oktober 2009

Tugas 5

1) Show that (A B) C = (A C) (B C)
proof :
(i) Show that (A B) C (A C) (B C)
Take any Χ (A B) C
Obvious Χ (A B) C
Χ (A B) Χ C
Χ A Χ B Χ C (Distributif)
Χ A Χ C Χ B Χ C
Χ (A C) Χ (B C)
Χ (A C) (B C)
We get for all Χ (A B) C that Χ (A C) (B C) It is means
(A B) C (A C) (B C)....(1)

(ii)Show that (A B) C (A C) (B C)
Take any Χ (A C) (B C)
Obvious Χ (A C) (B C)
Χ (A C) Χ (B C)
Χ A Χ C Χ B Χ C
Χ (A B) Χ C
Χ (A B) Χ C
Χ (A B) ∪ C....(2)
So (A B) C (A C) (B C)
From (1) and (2) we conclude that (A B) C = (A C) (B C)

2) Show that (A B) C = (A C) (B C)
proof :
(i) Show that (A B) C (A C) (B C)
Take any Χ (A B) C
Obvious Χ (A B) C
Χ (A B) Χ C
Χ A Χ B Χ C (Distributif)
Χ A Χ C Χ B Χ C
Χ (A C) Χ (B C)
Χ (A C) (B C)
We get for all Χ (A B) C that Χ (A C) (B C) It is means
(A B) C (A C) (B C)....(1)

(ii)Show that (A B) C (A C) (B C)
Take any Χ (A C) (B C)
Obvious Χ (A C) (B C)
Χ (A C) Χ (B C)
Χ A Χ C Χ B Χ C
Χ (A B) Χ C
Χ (A B) ∩ C....(2)
So (A B) C (A C) (B C)
From (1) and (2) we conclude that (A B) C = (A C) (B C)

Selasa, 06 Oktober 2009

TUGAS 4

1. Let A,B set and x is an elements. While :
a. x ∈ A ∩ B
b. x∉ A ∩ B

2. Show that :
a. A ∩ A = A
b. A ∩ B = B ∩ A
c. (A ∩ B) ∩ C = A ∩(B∩ C)

The answer:
1. a). x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B
b). PBE :
1. x ∉ A ∩ B
2. Tidak benar bahwa x ∈ A ∩ B
3. Tidak benar bahwa x ∈ A ∧ x ∈ B
4. x ∉ A ∧ x ∉ B

2. a). Proof :
i) Show that A ∩ A ⊂ A
Take any x ∈ A ∩ A
Obvious x ∈ A ∩ A
↔ x ∈ A ∧ x ∈ A
↔ x ∈ A
So, A ∩ A ⊂ A
ii) Show that A ⊂ A ∩ A
Take any x ∈ A
Obvious x ∈ A
↔ x ∈ A ∧ x ∈ A
↔ x ∈ A
So, A ⊂ A ∩ A
From (i) and (ii) we conclude that A ∩ A = A

b). Proof :
i). Show that A ∩ B ⊂ B ∩ A
Take any x ∈ A ∩ B ∧ x∈ B∩ A
Obvious x ∈ A ∩ B ∧ x ∈ B ∩ A
↔ x ∈(A ∩ B) ∧ x ∈ (B ∩ A)
↔ x ∈ {(A ∩ B) ∧ (B ∩ A)}
So A ∩ B ⊂ B ∩ A

ii). Show that B ∩A ⊂ A ∩ B
Take any x ∈ B ∩ A ∧ x ∈ A ∩ B
Obvious x ∈ B ∩ A ∧ x ∈ A ∩ B
↔ x ∈ (B ∩ A) ∧ x ∈ (A ∩ B)
↔ x ∈ {(B ∩ A) ∧ (A ∩ B)}
So B ∩ A ⊂ A ∩ B
From (i) and (ii) we conclude that A ∩ B = B ∩ A (H.Komutatif)

c). Proof :
i) Show that (A ∩ B)∩ C ⊂ A ∩ (B ∩ C)
Take any x ∈ (A ∩ B) ∩ C ∧ x ∈ A ∩ (B ∩ C)
Obvious x ∈ (A ∩ B) ∩ C ∧ x ∈ A ∩(B ∩ C)
↔ x ∈ (A ∩ B) ∩ C ∧ x ∈ A ∩ (B ∩ C)
↔ x ∈ {(A ∩ B) ∩ C ∧ A ∩ (B ∩ C)}
So (A ∩ B) ∩ C ⊂ A ∩ (B ∩ C)

ii) Show that A ∩(B ∩ C) ⊂ (A ∩ B)∩ C
Take any x ∈ A ∩(B ∩ C) ∧ x ∈ (A ∩ B)∩ C
Obvious x ∈ A ∩(B ∩ C) ∧ x ∈(A ∩ B)∩ C
↔ x ∈ A ∩ (B ∩ C) ∧ x ∈ (A ∩ B) ∩ C
↔ x ∈ {A ∩ (B ∩ C) ∧ (A ∩ B) ∩ C}
So A ∩(B ∩ C) ⊂ (A ∩ B)∩ C
From (i) and (ii) we conclude that A ∩(B ∩ C) = (A ∩ B)∩ C

Jumat, 02 Oktober 2009

TUGAS 3

1.Modus Ponens (MP)
p→q
p / q

[(p→q) p]→q
≡ [(~p q) p]→q (imp)
≡ [(~p p) (q p)]→q (dist)
≡ [ F (q p)]→q (komp)
≡ (q p)→q (id)
≡ (~q ~p) q (imp)
≡ (~q q) ~p (aso)
≡ T ~p (komp)
≡ T (id)


2. Modus Tollens (MT)
p→q
~q / ~p

[(p→q) ~q]→~p
≡ [(~p q) ~q]→~p (imp)
≡ [(~p~q) (q ~q] →~p (dist)
≡ [(~p ~q) F] →~p (komp)
≡ (~p ~q) →~p (id)
≡ (p q) ~p (imp)
≡ (p ~p) q (aso)
≡ T q (komp)
≡ T (id)


3. Silogisme
p→q
q→r / p→r

[(p→q) (q→r)]→( p→r)
≡ (p→q)→[(q→r)→( p→r)] (eksp)
≡ (p→q)→[(~q r)→(~p r)] (imp)
≡ (p→q)→[(q ~r) (~p r)] (imp)
≡ (p→q)→[(q ~r) (r ~p)] (komp)
≡ (p→q)→[(q ~r) r] ~p (aso)
≡ (p→q)→[(q r) (~r r)] ~p (dist)
≡ (p→q)→[(q r) T] p (komp)
≡ (p→q)→[(q r) ~p (id)
≡ (~p q)→q r ~p (imp)
≡ ~(~p q) (q r ~p) (imp)
≡ ~(~p q) (~pq) r (aso)
≡ T r (komp)
≡ T (id)


4. Distruktif Silogisme (DS)
(p q)
~p / q

[(p q) ~p]→q
≡ [(p ~p) (q ~p)]→q (dist)
≡ [F (q ~p)]→q (komp)
≡ (q ~p) →q (id)
≡ (~q p) q (imp)
≡ (~q q) p (aso)
≡ T p (komp)
≡ T (id)


5.Konstruktif Dilema (KD)
p→q (r→s)
(p r) / (q s)

{[(p→q) (r→s)] (p r)}→q s)
≡ [(~p q) (~r s) (p r)]→(q s) (imp)
≡ [(p ~q) (r ~s) (~p ~r)] (q)s) (imp)
≡ [(p ~q) (~p ~r)] [(r ~s) (q s)] (aso)
≡ [(p ~q) (~p ~r)] [r ~s) (q s)] (aso)
≡ [{(p ~q) ~p} {(p ~q) ~r}] [{(r ~s) (q s)] (dis)
≡ [{(p ~q) ~p} {(p ~q) ~r}] [{(r ~s) s} q] (aso)
≡ [{(p ~p) (~q ~p)} {(p ~r) (~q ~r)}] [{(r s) (~s s)} q] (dis)
≡ [{T (~q ~p)} {(p ~r) (~q ~r)}] [{(r s) T} q] (komp)
≡ [{(~q ~p) {(p ~r) (~q ~r)}] [(r s) q] (id)
≡ [{(~q ~p) {(p ~r) (~q ~r)} q] [(r s)] (aso)
≡ [{(~q ~p) q} {(p ~r) q} {(~q ~r) q}] [( s)] (dis)
≡ [{(~q q) ~p} (p q ~r) {(~q q) ~r}] [(r s)] (aso)
≡ [(T ~p) (p q ~r) (T ~r)] [(r s)] (komp)
≡ [(T (p q ~r T] [(r s)] (id)
≡ (p q ~r) (r s) (id)
≡ (r ~r) (p q s) (aso)
≡ T (p q s) (komp)
≡ T (id)


6. Destruktif Dilema (DD)
p→q (r→s)
(~q ~s) / (~p ~r)

{[(p→q) (r→s)] (~q ~s)}→(~p ~r)
≡ [(~p q) (~r s) (~q ~s)]→(~p ~r) (imp)
≡ [(p ~q) (r ~s) (q s)] ~p ~r) (imp)
≡ [(p ~q) (q s) (r ~s) (~p ~r)] (aso)
≡ [(p ~q) (q s)] [(r ~s) (~p ~r)] (aso)
≡ [{(p ~q) q} {(p ~q) s}] [{(r ~s) (~p ~r)] (dis)
≡ [{(p ~q) q} {(p ~q) s}] [(r ~s) ~r} ~p] (aso)
≡ [{(p q) (~q q)} {(p s) (~q s)}] [{(r ~r) (~s ~r)} ~p] (dis)
≡ [{(p q) T} {(p s) (~q s)}] [{T (~s ~r)} ~p] (komp)
≡ [(p q) (p s) (~q s)][(~s ~r) ~p] (id)
≡ [(p q) (p s) (~q s) ~p] (~s ~r) (aso)
≡ [{(p q) ~p} {(p s) ~p} {(q s) ~p}] (~s ~r) (dis)
≡ [{(p ~p) q} {(p ~p) s} (q s ~p)] (~s ~r) (aso)
≡ [(T q) (T s) (q s ~p)] (~s ~r) (komp)
≡ [T T (q s ~p)] (~s ~r) (id)
≡ (q s ~p) (~s ~r) (id)
≡ (s ~s) (~p q ~r) (aso)
≡ T (~p q ~r) (komp)
≡ T (id)